\(\int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx\) [303]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 107 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {27 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{c^{3/2} f}+\frac {9 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{5/2}}+\frac {27 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}} \]

[Out]

a^2*c*cos(f*x+e)^3/f/(c-c*sin(f*x+e))^(5/2)-3*a^2*arctanh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2
))*2^(1/2)/c^(3/2)/f+3*a^2*cos(f*x+e)/c/f/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.07, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {2815, 2759, 2758, 2728, 212} \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {3 \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{c^{3/2} f}+\frac {a^2 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{5/2}}+\frac {3 a^2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(-3*Sqrt[2]*a^2*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(c^(3/2)*f) + (a^2*c*Cos[e
 + f*x]^3)/(f*(c - c*Sin[e + f*x])^(5/2)) + (3*a^2*Cos[e + f*x])/(c*f*Sqrt[c - c*Sin[e + f*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2758

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(a*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2759

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[2*g*(g
*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(2*m +
p + 1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \left (a^2 c^2\right ) \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^{7/2}} \, dx \\ & = \frac {a^2 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{5/2}}-\frac {1}{2} \left (3 a^2\right ) \int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{3/2}} \, dx \\ & = \frac {a^2 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{5/2}}+\frac {3 a^2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}}-\frac {\left (3 a^2\right ) \int \frac {1}{\sqrt {c-c \sin (e+f x)}} \, dx}{c} \\ & = \frac {a^2 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{5/2}}+\frac {3 a^2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}}+\frac {\left (6 a^2\right ) \text {Subst}\left (\int \frac {1}{2 c-x^2} \, dx,x,-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{c f} \\ & = -\frac {3 \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{c^{3/2} f}+\frac {a^2 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{5/2}}+\frac {3 a^2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.77 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.36 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {9 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (3 \cos \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {3}{2} (e+f x)\right )+3 \sin \left (\frac {1}{2} (e+f x)\right )-(6+6 i) \sqrt [4]{-1} \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) (-1+\sin (e+f x))-\sin \left (\frac {3}{2} (e+f x)\right )\right )}{c f (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(3 + 3*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(-9*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(3*Cos[(e + f*x)/2] + Cos[(3*(e + f*x))/2] + 3*Sin[(e + f*x)/2] - (6
 + 6*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])]*(-1 + Sin[e + f*x]) - Sin[(3*(e + f*x
))/2]))/(c*f*(-1 + Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 2.20 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.36

method result size
default \(\frac {a^{2} \left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c \sin \left (f x +e \right )-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c -2 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {c}\, \sin \left (f x +e \right )+4 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {c}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{c^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(145\)
parts \(\frac {a^{2} \left (-\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \sin \left (f x +e \right )+2 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {3}{2}}+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{4 c^{\frac {7}{2}} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {a^{2} \left (7 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c \sin \left (f x +e \right )-7 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c -8 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {c}\, \sin \left (f x +e \right )+10 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {c}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{4 c^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {a^{2} \left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c \sin \left (f x +e \right )-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c +2 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {c}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{2 c^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(394\)

[In]

int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

a^2*(3*2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*c*sin(f*x+e)-3*2^(1/2)*arctanh(1/2*(c*(si
n(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*c-2*(c*(sin(f*x+e)+1))^(1/2)*c^(1/2)*sin(f*x+e)+4*(c*(sin(f*x+e)+1))^(1/2)
*c^(1/2))*(c*(sin(f*x+e)+1))^(1/2)/c^(5/2)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 299 vs. \(2 (102) = 204\).

Time = 0.27 (sec) , antiderivative size = 299, normalized size of antiderivative = 2.79 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=\frac {\frac {3 \, \sqrt {2} {\left (a^{2} c \cos \left (f x + e\right )^{2} - a^{2} c \cos \left (f x + e\right ) - 2 \, a^{2} c + {\left (a^{2} c \cos \left (f x + e\right ) + 2 \, a^{2} c\right )} \sin \left (f x + e\right )\right )} \log \left (-\frac {\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) - \frac {2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )}}{\sqrt {c}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt {c}} - 4 \, {\left (a^{2} \cos \left (f x + e\right )^{2} + 2 \, a^{2} \cos \left (f x + e\right ) + a^{2} - {\left (a^{2} \cos \left (f x + e\right ) - a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{2 \, {\left (c^{2} f \cos \left (f x + e\right )^{2} - c^{2} f \cos \left (f x + e\right ) - 2 \, c^{2} f + {\left (c^{2} f \cos \left (f x + e\right ) + 2 \, c^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/2*(3*sqrt(2)*(a^2*c*cos(f*x + e)^2 - a^2*c*cos(f*x + e) - 2*a^2*c + (a^2*c*cos(f*x + e) + 2*a^2*c)*sin(f*x +
 e))*log(-(cos(f*x + e)^2 + (cos(f*x + e) - 2)*sin(f*x + e) - 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*(cos(f*x + e
) + sin(f*x + e) + 1)/sqrt(c) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*
x + e) - 2))/sqrt(c) - 4*(a^2*cos(f*x + e)^2 + 2*a^2*cos(f*x + e) + a^2 - (a^2*cos(f*x + e) - a^2)*sin(f*x + e
))*sqrt(-c*sin(f*x + e) + c))/(c^2*f*cos(f*x + e)^2 - c^2*f*cos(f*x + e) - 2*c^2*f + (c^2*f*cos(f*x + e) + 2*c
^2*f)*sin(f*x + e))

Sympy [F]

\[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=a^{2} \left (\int \frac {2 \sin {\left (e + f x \right )}}{- c \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + c \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx + \int \frac {\sin ^{2}{\left (e + f x \right )}}{- c \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + c \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx + \int \frac {1}{- c \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + c \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx\right ) \]

[In]

integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(3/2),x)

[Out]

a**2*(Integral(2*sin(e + f*x)/(-c*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + c*sqrt(-c*sin(e + f*x) + c)), x) +
Integral(sin(e + f*x)**2/(-c*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + c*sqrt(-c*sin(e + f*x) + c)), x) + Integ
ral(1/(-c*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + c*sqrt(-c*sin(e + f*x) + c)), x))

Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^2/(-c*sin(f*x + e) + c)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 297 vs. \(2 (102) = 204\).

Time = 0.36 (sec) , antiderivative size = 297, normalized size of antiderivative = 2.78 \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\frac {6 \, \sqrt {2} a^{2} \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{c^{\frac {3}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} a^{2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{c^{\frac {3}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} {\left (a^{2} \sqrt {c} - \frac {14 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {3 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )}}{c^{2} {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{4 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-1/4*(6*sqrt(2)*a^2*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1))/(c^(3/2)*s
gn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + sqrt(2)*a^2*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(c^(3/2)*(cos(-1/4*pi +
 1/2*f*x + 1/2*e) + 1)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - sqrt(2)*(a^2*sqrt(c) - 14*a^2*sqrt(c)*(cos(-1/4*
pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - 3*a^2*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e
) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2)/(c^2*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2
*f*x + 1/2*e) + 1) - (cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2)*sgn(sin(-1
/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^2}{(c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(3/2),x)

[Out]

int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(3/2), x)